

Commentary |  Open Access | Received: 2025-07-02 | Accepted: 2025-12-05 | Published: 2025-12-31



## Artificial Intelligence and Mental Health Care in Afghanistan: Opportunities, Constraints, and Ethical Considerations

Ahmad Shoaib Haidarzada<sup>1</sup>✉

<sup>1</sup>Department of Mental Health, Herat Regional Hospital, Herat, Afghanistan

### Introduction

The integration of Artificial Intelligence (AI) into mental health care in Afghanistan presents a complex landscape characterized by significant opportunities, considerable constraints, and pressing ethical considerations. The global burden of mental health disorders has escalated, a situation exacerbated by events such as the COVID-19 pandemic and inherent limitations within traditional mental health systems (1). This has accelerated interest in digital health solutions, with AI emerging as a transformative force (1-2).

AI offers numerous opportunities to enhance mental health care delivery, particularly in contexts like Afghanistan where resources may be scarce. AI can improve access to diagnostic and therapeutic services, offering innovative tools for early intervention and personalized treatment (3). By analyzing vast amounts of data, AI can facilitate better predictions, treatment recommendations, and improved patient outcomes (4). For instance, machine learning algorithms, natural language processing (NLP), and neuroimaging analysis can provide more precise and personalized care (4-5). NLP, in particular, can extract social determinants of health (SDOH) from unstructured electronic health records (EHR) to provide a more holistic view of a patient's context, which is often crucial for mental

health outcomes but rarely available in structured data (6).

AI-powered chatbots represent a significant area of development, capable of administering treatments that were once exclusively provided by human professionals (7). These systems can enhance diagnostic accuracy, particularly for conditions like depression, anxiety, and ADHD, by leveraging machine learning and data from wearable sensors to create digital phenotypes (8). The application of AI can also aid in monitoring for relapse and helping to prevent mental health conditions before they reach clinical levels of symptomatology (4). In Afghanistan, specifically, a case study has explored the development of AI-based chatbots using encoder-decoder attention mechanisms and TFIDF for mental health disorder services (9). Such technologies can provide support through virtual assistance and predictive analytics, enhancing patient engagement (9).

Despite the promising opportunities, significant constraints impede the widespread and effective implementation of AI in mental health care within regions like Afghanistan. A primary challenge is the limited infrastructure, which includes inadequate access to reliable internet, stable electricity, and

✉ Corresponding Author: Ahmad Shoaib Haidarzada  
Email address: [shoaibhaidarzada@gmail.com](mailto:shoaibhaidarzada@gmail.com)  
Razi International Medical Journal

Cite this article as: Haidarzada, AS. Artificial Intelligence and Mental Health Care in Afghanistan: Opportunities, Constraints, and Ethical Considerations. *Razi International Medical Journal*, 5(1). DOI: 10.56101/rimj.v5i1.200



necessary digital hardware (9). These foundational elements are critical for deploying and maintaining AI-powered digital health solutions. Another considerable constraint is the lack of digital literacy among both healthcare providers and the general population (9). For AI tools to be effective, users must be able to interact with them competently and confidently.

Cultural stigmas surrounding mental health pose another major barrier. In many societies, including Afghanistan, mental health issues are often stigmatized, leading to underreporting, delayed help-seeking, and resistance to formal interventions, whether traditional or AI-based (9). This cultural context can limit the acceptance and utilization of AI tools, even if they are technically available. Furthermore, the absence of standardized terminologies in clinical practice can hinder the integration of AI. While standardized terminologies optimize patient care and safety in electronic health records (EHRs) (10), their lack can complicate data processing and analysis for AI systems. Financial constraints, including limited funding for technology adoption and training, also present a substantial hurdle (10). Forgoing healthcare for economic reasons is already associated with adverse health outcomes (10), and the cost of implementing and scaling AI solutions could exacerbate these disparities.

The deployment of AI in mental health care, especially in vulnerable settings, raises a myriad of ethical concerns that demand careful consideration. Patient privacy and data security are paramount (11). AI systems often require access to sensitive personal health information for effective diagnosis and treatment (11). Ensuring robust data protection measures and compliance with privacy regulations is crucial to prevent breaches and maintain patient trust (11).

Algorithmic bias is another critical concern (11). AI algorithms are trained on data, and if this data is not representative or contains historical biases, the AI system can perpetuate or even amplify these biases, leading to inequitable or inaccurate diagnoses and treatments for certain populations (11). This is particularly problematic in diverse cultural contexts, where AI models trained on Western populations

might not be suitable for populations with different cultural norms and expressions of mental distress.

Informed consent is a foundational ethical principle that becomes more complex with AI (10-11). Patients must fully understand how AI tools will be used in their care, the potential benefits, risks, and limitations. The "black box" nature of some AI algorithms can make it difficult to explain their decision-making processes transparently to patients and clinicians (4, 12). This opacity can erode trust and challenge accountability. The shift towards "democratization of mental health" through generative AI (GenAI) can increase accessibility but also amplifies ethical considerations regarding knowledge dissemination and practice (12).

The risk of de-humanization of care is also present. While AI can augment human capabilities, it should not replace the empathetic and nuanced understanding that human therapists provide (12). Over-reliance on AI could diminish the human connection essential for mental health treatment. Furthermore, the legal and ethical framework for AI in mental health is still evolving (13-14). There is a need for clear policies and guidelines to ensure responsible implementation, address liability issues, and safeguard patient well-being (13-14). The ethical decision-making guidelines for mental health clinicians are being actively discussed to navigate the opportunities and challenges presented by AI (13).

The field of AI in mental health is a double-edged sword, offering both profound advantages and inherent hazards that require careful management to ensure beneficial and responsible outcomes (15).

#### ***Conflicts of interest***

None.

#### ***Author contribution***

This article was written solely by ASH.

#### ***Sources of funding***

None.

#### ***Ethical approval***

Not available.

#### ***Consent***

Not available.

## References

1. Piotr Rzyczniok, Mateusz Kopczyński, Aneta Rasińska, Justyna Matusik, Justyna Jachimczak, Paulina Bala. *ARTIFICIAL INTELLIGENCE IN MENTAL HEALTH CARE: OPPORTUNITIES, CHALLENGES, AND ETHICAL DILEMMAS*. IJITSS [Internet]. 2025Aug.12 [cited 2025Dec.24];2(3)(47). Available from: <https://rsglobal.pl/index.php/ijitss/article/view/3529>
2. Ali M, Ali S, Abbas Q, Abbas Z, Lee SW. Artificial intelligence for mental health: A narrative review of applications, challenges, and future directions in digital health. *Digital Health*. 2025 Nov;11:20552076251395548.
3. Periaysamy AG, Satapathy P, Neyazi A, Padhi BK. ChatGPT: roles and boundaries of the new artificial intelligence tool in medical education and health research—correspondence. *Annals of Medicine and Surgery*. 2023 Apr 1;85(4):1317-8.
4. Rosenfeld A, Benrimoh D, Armstrong C, Mirchi N, Langlois-Therrien T, Rollins C, Tanguay-Sela M, Mehltretter J, Fratila R, Israel S, Snook E. Big Data analytics and artificial intelligence in mental healthcare. In *Applications of big data in healthcare* 2021 Jan 1 (pp. 137-171). Academic Press.
5. Sabapathi S, Mohan S, Marimuthu M, Peachimuthu V, Thiagarajan G, Natarajan ST, Marikannan JS. A study on artificial intelligence enhanced mental healthcare. In *AIP Conference Proceedings* 2025 Apr 1 (Vol. 3279, No. 1, p. 020202). AIP Publishing LLC.
6. Han S, Zhang RF, Shi L, Richie R, Liu H, Tseng A, Quan W, Ryan N, Brent D, Tsui FR. Classifying social determinants of health from unstructured electronic health records using deep learning-based natural language processing. *Journal of biomedical informatics*. 2022 Mar 1;127:103984.
7. Omarov B, Narynov S, Zhumanov Z. Artificial intelligence-enabled chatbots in mental health: A systematic review. *Computers, Materials & Continua*. 2023 Mar 1;74(3).
8. Arya PA, Sidharth SA, Saad SH, Sarib SI, Bharati JA. Study of web based mental health applications. *Int Res J Adv Engg Hub*. 2024;2(11):2586-92.
9. Al Zaber S. *Digital Mental Health Interventions for War-Affected Populations: Current Solutions and the Potential of AI-A Scoping Review*. *Clinical Nutrition*. 2025 May 30.
10. Fennelly O, Grogan L, Reed A, Hardiker NR. Use of standardized terminologies in clinical practice: A scoping review. *International journal of medical informatics*. 2021 May 1;149:104431.
11. Gamble A. Artificial intelligence and mobile apps for mental healthcare: a social informatics perspective. *Aslib Journal of Information Management*. 2020 Nov 12;72(4):509-23.
12. Elyoseph Z, Gur T, Haber Y, Simon T, Angert T, Navon Y, Tal A, Asman O. An ethical perspective on the democratization of mental health with generative AI. *JMIR Mental Health*. 2024 Oct 17;11:e58011.
13. Pillay Y. *Ethical Decision-Making Guidelines for Mental Health Clinicians in the Artificial Intelligence (AI) Era*. *InHealthcare* 2025 Nov 25 (Vol. 13, No. 23, p. 3057). MDPI.
14. Lodha P, Pandya A. Ethical Dilemmas of Digitalisation of Mental Health: Balancing Technological Advancement with Ethical Considerations. *Frontiers in Human Dynamics*. 2025;7:1654355.
15. Burr C, Morley J. Empowerment or engagement? Digital health technologies for mental healthcare. In *The 2019 yearbook of the digital ethics lab* 2020 Jan 29 (pp. 67-88). Cham: Springer International Publishing.